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Abstract: 3D phase imaging recovers an object’s volumetric refractive index from intensity
and/or holographic measurements. Partially coherent methods, such as illumination-based
differential phase contrast (DPC), are particularly simple to implement in a commercial brightfield
microscope. 3D DPC acquires images at multiple focus positions and with different illumination
source patterns in order to reconstruct 3D refractive index. Here, we present a practical extension
of the 3D DPC method that does not require a precise motion stage for scanning the focus and
uses optimized illumination patterns for improved performance. The user scans the focus by
hand, using the microscope’s focus knob, and the algorithm self-calibrates the axial position to
solve for the 3D refractive index of the sample through a computational inverse problem. We
further show that the illumination patterns can be optimized by an end-to-end learning procedure.
Combining these two, we demonstrate improved 3D DPC with a commercial microscope whose
only hardware modification is LED array illumination.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Quantitative phase imaging (QPI) recovers a sample’s phase delay, which is directly related to
optical path length. Since phase cannot be measured directly, QPI methods use various phase
contrast mechanisms to encode phase information into the captured intensity measurements,
and then solve for phase indirectly. Traditionally, coherent light is used [1]; however, methods
that use partially spatially coherent light [2,3] can have higher spatial resolution [4], less
coherence-induced speckle [5], and are often less expensive. Differential phase contrast (DPC)
microscopy is a practical QPI method that recovers quantitative phase from multiple images
with different illumination source patterns [2,6]. The illumination source diversity can be
conveniently achieved with a programmable LED array [2,7,8]; thus, QPI is enabled by a simple
and inexpensive modification to a commercial microscope. The LED array microscope is, in
general, a powerful platform for computational illumination microscopy, enabling not only QPI,
but also multi-contrast [7,9], super-resolution [10,11] and 3D imaging [12].

Since phase is a projected quantity related to both the refractive index (RI) and thickness
of the sample, 3D phase imaging amounts to volumetric reconstruction of the sample’s RI
[4,13]. Interferometric and diffraction tomography techniques [12,14–20], as well as 3D Fourier
Ptychography [12,21], reconstruct 3D RI from projection measurements captured at different
illumination angles with spatially coherent light. 3D DPC [22,23], on the other hand, uses
partially coherent illumination (e.g. LED array illumination with many LEDs on) to create strong
depth sectioning effects [24] that blur out-of-focus planes [2]. The sample is then scanned axially
to image the third (z) dimension. This approach is practical because it gives good signal and does
not require well-aligned illumination [18,20,25]; however, it does require an axial motion stage,
which increases hardware complexity and cost.
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Axial scanning for 3D DPC is usually performed by an automated motion stage which stops
at each defocus plane [22]. This "stop-and-stare" strategy limits the overall speed of capture
[26] because the camera must wait for the motion stage to move and settle before capturing each
frame. Fast focusing mechanisms like focus-tunable lenses [23] can improve capture speed, but
are expensive to implement. For high-NA systems, motion stages are particularly expensive since
the depth-of-field (DoF) is short, so high-precision axial motion is required [23].

Here, we present an extension of 3D DPC that enables fast axial scanning without a dedicated
motion stage. Instead, we hand-turn the focus knob of the microscope to scan through focus
while capturing video measurements, and then use an algorithmic self-calibration procedure to
solve for the defocus positions in post-processing. The system capture speed is increased because
the images are taken during the scanning motion, and the overall cost of the system decreases
significantly without the need for an axial motion stage.

We further improve the practicality of 3D DPC by optimizing the illumination source patterns.
Previous work [6,22] used four half-circular illumination patterns at each focal plane, though later
works have shown the ability to reduce the number of images captured [23,27]. The half-circle
designs were developed heuristically for use with analytical inversion methods. However, since
arbitrary patterns can be used in our system, we aim to optimize for illumination patterns that best
encode the 3D phase information in the raw images. To enable a systematic design of the LED
patterns, Hugonnet et al. [28] defined an objective function to evaluate illumination patterns.
However, the optimized design often becomes very sensitive to the choice of objective function
(e.g., to balance high vs. low frequency, sensitivity vs. signal-to-noise ratio (SNR)). Recently,
a class of data-driven methods called physics-based learning have been used to optimize the
illumination design end-to-end to improve the final reconstruction without a crafted objective
function [29,30]. Here, we employ physics-based learning to optimize the illumination patterns
for our 3D DPC setup, ensuring efficient and robust capture strategies. Combining this with our
self-calibrated axial motion, we demonstrate practical high-quality refractive index reconstruction
on a commercial microscope with LED array illumination.

2. Background: 3D differential phase contrast imaging

An inhomogeneous 3D volume can be written as a scattering potential V (r) = k2
0
(︁
n2

0 − n2 (r)
)︁
,

where r denotes the 3D spatial coordinate, k0 is the wave number, n0 is the RI of the surrounding
medium, and n (r) is the complex RI of the sample (real part for phase and imaginary part for
absorption). When coherent light propagates through the 3D volume, we can write the evolution
of the electric field using the Lippmann-Schwinger equation:

U (r) = Uin (r) + Uscat (r) = Uin (r) +
∭

U (r′)V (r′)G (r − r′) d3r′, (1)

where Uin, Uscat are the incident and scattered light and G is the 3D Green’s function [4].
For a partially coherent source, we calculate the intensity distribution at the sensor by treating

the source as a collection of different spatially-coherent sources and summing the intensity
generated by each after coherent propagation:

I (r) =
∬

S (u′) |U (r; u′) |2d2u′, (2)

where S represents the 2D angular distribution of the incoherent source (assuming Kohler
geometry) and u′ describes the spatial frequency of each spatially coherent source (e.g. each
LED). The 3D spatial coordinates, r, is dropped in future expressions for simplicity.

Previous work [22] simplified Eq. (2) by taking the first Born approximation [4] in order to
obtain a linear model directly relating the intensity measurements to the scattering potential.
The Born approximation assumes U ≈ Uin in the integral term of Eq. (1) and is valid for
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weakly-scattering objects where Uin ≫ Uscat. The weak object approximation applies when the
auto-correlation of Uscat is negligible due to weak scattering, |Uscat |

2 ≈ 0 [31]. If we separate the
scattering potential into its real and imaginary parts, Ṽ = ṼRe + i · ṼIm, the background subtracted
3D image stack under the ith illumination pattern, I ′i , can be written as

Ĩ ′i = H(i)
Re · ṼRe + H(i)

Im · ṼIm, (3)

where ·̃ denotes Fourier transform and H(i)
Re and H(i)

Im are the real and imaginary parts of the transfer
functions corresponding to phase and absorption contrast, respectively, for the ith pattern Si [22]:

H(i)
Re = Fz i[

(︁
S′

i · Pz
)︁
⋆ (Pz · Γ) − (Pz · Γ)⋆

(︁
S′

i · Pz
)︁
],

H(i)
Im = Fz[

(︁
S′

i · Pz
)︁
⋆ (Pz · Γ) + (Pz · Γ)⋆

(︁
S′

i · Pz
)︁
],

(4)

where Fz denotes Fourier transform along the z axis, and ⋆ denotes cross-correlation. S′
i

is the flipped source distribution of Si, Pz is the pupil function with defocus kernel, and
Γ (u) = 1

4π
√

n2
oλ

−2−|u |2
for lateral spatial frequency u.

Given defocus image stacks for each of M different source patterns, the scattering potentials
can be found by solving the following inverse problem:

arg min
ṼRe,ṼIm

∑︂
i=1,...,M

|Ĩ ′i − H(i)
Re · ṼRe − H(i)

Im · ṼIm |
2
2 + η · R (VRe, VIm)

2
2 , (5)

where R (·) is the regularization term. When Tikhonov regularization (L2 norm of VRe and VIm)
is used, we can find an analytical estimator for the scattering potential:

⎛⎜⎝
V∗

Re

V∗
Im

⎞⎟⎠ = ⎛⎜⎝
∑︁

|H(i)
Re |

2 + η
∑︁

H(i)H
Im H(i)

Re∑︁
H(i)H

Re H(i)
Im

∑︁
|H(i)

Im |
2 + η

⎞⎟⎠
−1 ⎛⎜⎝

∑︁
H(i)H

Re Ĩ ′i∑︁
H(i)H

Im Ĩ ′i

⎞⎟⎠ . (6)

Thus, the 3D absorption and refractive index distributions can be recovered from the raw data.

3. Axial scanning and defocus self-calibration

In previous work, axial through-focus scanning was performed by a motion z-stage with closed-
loop control. With the "stop-and-stare" strategy, the user moves the stage to each desired focal
plane and acquires images with known defocus positions. Here, we instead hand-turn the built-in
focus knob on a standard microscope while continuously updating the illumination patterns and
capturing images at a fast enough frame rate such that there is negligible motion blur in each
frame. This enables fast axial scanning without hardware dependency; however, the user can no
longer specify the focal planes and the defocus position of each image is unknown.

We seek an algorithmic way to infer the unknown defocus positions in post-processing, known
as self-calibration. With partially coherent illumination (many LEDs turned on at once), the
system will have strong optical sectioning [24], meaning that images taken at a particular focal
plane will have little information from other focal planes. Thus, the problem of jointly solving
for the defocus positions and the 3D sample becomes very ill-posed. If spatially coherent
illumination (a single LED) is used instead, there is no optical sectioning and changing focus
of the microscope only changes the defocus kernel. This makes 3D reconstruction difficult but
gives good information to solve for defocus positions. Hence, we choose to use both partially
coherent illumination patterns designed for DPC and a self-calibration pattern with only a single
LED on. While the focus knob is swept by hand, the LED array quickly alternates between these
patterns, with each lasting for one exposure.
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Our capture strategy thus collects images for the single-LED illumination at different defocus
positions, which are used for self-calibration. The LED array is placed sufficiently far from the
sample such that an LED illuminates the sample with a plane wave (spatially coherent light),
defined as exp (i2πu′ · x), where u′ corresponds to the plane wave angle. Because the light is
spatially coherent, we can model the single-LED self-calibration images as

Icalib (x, z) = |F −1[Pz (u − u′) · õ (u)]|2, (7)

where o is the 2D complex-field, and u denotes the lateral spatial frequency. Pz is the pupil
function with a defocus distance z, modeled by angular spectrum propagation [4], Pz (u) =
P (u) exp

[︂
i2πz

√︂
1
λ2 − u2

]︂
. This single-LED illumination can be from any angle; we choose an

off-axis LED because the image will shift laterally with defocus, providing stronger defocus
contrast.

3.1. Joint optimization for self-calibration

Once the dataset (with N images) is captured, we then need to jointly solve for the field and the
defocus positions. The problem can be written in a joint optimization form,

arg min
o,z

N∑︂
i=1

∥Icalib (x, zi) − |F −1[Pzi (u − u′) · õ (u)]|2∥2
2 . (8)

This formulation takes N intensity images, Icalib (zi), to solve for one 2D complex-field, o, and
defocus positions, zi for i = 1, . . . , N, and thus is well-constrained even with only a few defocus
planes [32]. The optimization problem is, however, non-convex, and the defocus positions zi and
complex-field o are dependent on each other. As a result, when we use gradient descent-based
methods to optimize them, their gradients will be affected by one another, making it difficult
to reach convergence. However, if the defocus positions are known, the field can be solved for;
similarly, if the field is known, the defocus position can also be determined for each image. For a
non-divergence solution, we alternate the optimization for these two unknowns, such that only
one variable is updated at each time [33,34].

To perform the optimization, we first initialize the defocus positions with a guess of the total
range of defocus and equal spacing between images. Then, we use gradient descent, implemented
with Adam [35] for fast convergence, to optimize the complex-field in Eq. (8) with z fixed. Next,
we fix the complex-field at the current estimate and update the defocus positions, z. We check
the loss after each iteration and stop the update if it converges earlier. These alternating updates
continue until the convergence of both variables. To ensure a unique solution of defocus positions,
a non-decreasing condition is assumed, such that the defocus motion is only in one direction.
This condition is enforced by projecting the updated defocus positions into a non-decreasing
sequence.

After joint optimization, we know the defocus position for each single-LED image. Then the
defocus positions for images using other illumination patterns are bi-linearly interpolated by the
nearest known defocus positions from single-LED images. We also note that, since image planes
are no longer equally spaced, during the 3D reconstruction as in Eq. (3), a non-uniform discrete
Fourier transform needs to be computed in the z direction.

4. Physics-based learning for illumination pattern optimization

The choice of illumination patterns will largely dictate the quality of the results. As described
above, we time-interleave a single-LED illumination with multiple DPC patterns. Instead of
using the traditional half-circle DPC patterns, we use new techniques in physics-based learning
[29] to design better partially coherent DPC illumination patterns. The forward model of image
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formation for 3D DPC ‘encodes’ the sample’s scattering potential into 2D intensity measurements,
and the reconstruction ‘decodes’ the 3D information from these measurements. As described in
Section 2., the encoding and decoding processes are described by the system’s transfer functions,
which specify what information can be encoded into the measurements as well as how much of
the encoded information can be recovered (without being overwhelmed by noise, etc.).

Since both the forward model and the reconstruction are differentiable in simulation, physics-
based learning can optimize the patterns by forming the encoding-decoding pipeline, as in
Fig. 1(b), then defining a loss function to measure the discrepancy between the the true scattering
potential of a simulated sample and its reconstruction. The simulated samples, which the
optimized illumination patterns will be tailored to, are expected to have a spatial frequency
distribution similar to the experimental samples. The illumination patterns are updated iteratively
to minimize the loss function. Our loss function consists of an object consistency loss and a
source physical constraint term:

Loss (S) = ∥V − rec{fwd [H (S) , V] , H (S)}∥2
2 + µ · c (S) , (9)

where S denotes a set of illumination patterns. The real and imaginary components of the transfer
function and scattering potential are written together for conciseness. The object consistency
loss measures the L2-distance between the reconstruction and the true scattering potential, V ,
where fwd and rec are the forward model and reconstruction as described in Eq. (3) and Eq. (5),
respectively.

The source physical constraint term, c, enforces non-negative light intensity and limits the
maximum intensity of each LED to one:

c (S) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−S, S<0
0, 0 ≤ S ≤ 1
S − 1, S>1.

(10)

This term will give a reverse gradient when S goes below 0 or above 1. The overall weight of
this term is set to be large, so that its gradient also prevails over the gradient of object consistency
when the light intensity goes beyond the range. We find this term effective to eliminate trivial
solutions with very large or negative values for light sources, and the optimized patterns do not
require a normalization or clipping at the end.

4.1. Practical considerations

We discuss a few practical considerations that we include in the optimization. First, it is important
to simulate the noise in the forward model to discourage solutions that bring good phase contrast
but sacrifice the overall SNR. Hence, we model the readout noise and the signal noise in the
forward model. The readout noise is from a Gaussian distribution by its nature, and the signal
noise is from a Poisson distribution, which is also approximated as Gaussian for the relatively
high light levels in our system. During physics-based learning, both the readout and the signal
noise are sampled from standard normal distributions and scaled with the total illumination
intensity,

∑︁
S, before being added to the simulated intensity images at the end of the forward

model. The total noise, I ′noise, added to the normalized intensity images can be written as

I ′noise =
α · Nreadout

texp
∑︁

S
+
β · Nsignal√︁

texp
∑︁

S
, where Nreadout, Nsignal ∼ N (0, 1) , (11)

where texp is the exposure time, and α, β are coefficients we obtained from experimentally-
captured images. Since the additive noise carries no information about the sample, it will only
negatively affect the reconstruction and raise the loss value. In this way, the physics-based
learning optimization will have an incentive to use higher total illumination power.
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Fig. 1. (a) Imaging setup on a commercial inverted microscope with a custom LED array
illumination unit. The sample is imaged with various partially-coherent illumination patterns
and at different focal planes; then a computational algorithm recovers the 3D refractive index
map from the captured dataset. (b) We capture images continuously while cycling through
different illumination patterns and scanning axially by hand-turning the focus knob. The
single LED illumination pattern (spatially coherent) enables self-calibration of the defocus
positions, such that the precise focus position need not be known. (c) Illumination patterns
were designed by physics-based learning to optimize encoding of phase information into
intensity measurements.

Second, binary-valued illumination patterns (i.e., each LED is either on or off) are easier to
implement in practice because: 1) the hardware delay time of binary-valued pattern updates are
shorter, and 2) binary-valued patterns do not require per-LED illumination intensity calibration.
However, this binary-value constraint requires a combinatorial optimization, which is difficult
to solve in practice. Instead, we still use gradient descent to optimize for continuous-valued
patterns while promoting a binarized LED intensity value distribution (values to be close to
either 0 (off) or 1 (on)) as follows. At each iteration, we feed in the binarized patterns to the
forward model while keeping the continuous-valued patterns for the reconstruction. Since only
the continuous-valued patterns are updated during the gradient descent optimization, the final
optimized patterns will have more intensity values close to 0 or 1 to minimize the mismatch due
to the binarized patterns in forward model. After the optimization, the binary-valued patterns
can be obtained by thresholding the continuous-valued optimized patterns.

Third, we take into account the slight misalignment of the LED array to improve the robustness
of the optimized patterns. We randomly add a small lateral shift to the source patterns during
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the forward model while assuming the original, not-shifted patterns in the reconstruction. This
mismatch will deteriorate the reconstruction for illumination patterns sensitive to misalignment,
and we find that the optimized patterns with this consideration are denser and more connected.

5. Results

Experiments were performed on a commercial inverted microscope (Nikon TE2000-U) with a
40× 0.65NA objective lens (Nikon). A customized LED quasi-dome array (SCI Microscopy) [36]
was installed on the microscope to replace the conventional illumination unit. The top panel of the
LED array was positioned 65mm above the focal plane and only the ‘brightfield’ LEDs were used
(those that illuminate the sample from an angle within the NA of the objective lens). Green LEDs
(λ centered at 525nm) were used throughout the experiment. We used a sCMOS sensor (PCO
Edge 5.5 monochromatic) to capture intensity images in global shutter mode. Each exposure was
hardware triggered by the LED array’s controller (Tenseey 3.2) after every illumination pattern
update. We used an automated piezoelectric z-stage (Thorlabs MZS500-E) to defocus the sample
for the comparison case of controlled axial scanning. For hand-turning defocus, the fine focus
knob of the microscope was spun, and an off-axis LED at NAx = 0.36, NAy = 0.0 was used as the
self-calibration single-LED pattern.

In the rest of this section, we first validate our defocus self-calibration. Then, we detail
the physics-based learning optimization setup in simulation and validate with controlled axial
scanning. In the end, we combine together the self-calibration and optimized patterns as our final
stage-free 3D DPC system and show experimental results.

5.1. Defocus self-calibration validation

We first validate the self-calibration algorithm on experimental data from single-LED illumination.
We use the precision z-stage to defocus and acquire an evenly-spaced image stack with 140 planes
with a step size of 1µm. This image stack is acquired with the same optics and exposure setting
as in the rest of study. Then, we randomly choose a number of images with defocus positions in a
monotonic order, and those chosen images become an unevenly-spaced image stack with known
defocus positions, which can be used to validate our self-calibration algorithm. We repeat this
process to randomly generate 20 image stacks for each of 10 different average defocus spacing
between images, from 1µm to 10µm. The self-calibration algorithm, blind to the knowledge of
their ground truth positions, is performed on each image stack as follows. The self-calibration
is initialized with a linear defocus estimation. Then, the joint updates are performed for 100
iterations, each of which contains 50 gradient descent steps to update the field and 10 steps to
update the defocus positions.

The error of the self-calibration is quantified by comparing with the ground truth defocus
positions and results are plotted in Fig. 2. With average defocus spacing of 1µm, the defocus
position error was 91nm, which is close to the resolution of the z-stage (50nm). When the average
defocus spacing is 5µm, the defocus position error is 0.29µm while the error of linear guessing
jumps to 1.82µm.

5.2. DPC Illumination pattern optimization

To determine the optimal number of DPC illumination patterns, we compare the final object
consistency losses for the optimizations with different numbers of patterns. When an additional
pattern does not further reduce the loss, it is considered unnecessary. Figure 3 shows the
relationship between the object consistency loss and the number of DPC patterns. When noise is
incorporated into the simulation (Fig. 3(b)), having more patterns in a fixed total acquisition time
reduces the SNR. We find 2-4 DPC patterns gives the minimal loss value, and thus we choose to
have four illumination patterns, as in the case of half-circular DPC illumination patterns.
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Fig. 2. Algorithmic self-calibration for defocus positions. (a) Self-calibration images from
a single off-axis LED at different depth planes for a simple object (a single polystyrene
bead). (b) Experimental average defocus position errors before (linear guessing) and after
self-calibration for different average defocus spacing between measurements. Each data
point shows the average over 20 unevenly-spaced image stacks, and the error bars denote 2×
the standard deviation.

Fig. 3. The final object consistency loss of physics-based learning as the number of
illumination patterns varies, (a) without noise, and (b) with simulated noise. Marker colors
indicate the acquisition time for each set of illumination patterns.

Next, we use end-to-end optimization to find the patterns for our four DPC illuminations. The
patterns are randomly initialized from a uniform distribution and then optimized by an Adam
optimizer [35] for 250 iterations. The optimization is implemented in Tensorflow (Google), and
we use a single GPU (Nvidia Titan X) to accelerate the computing. The optimized patterns are
shown in the first two rows of Fig. 4(c). The typical DPC half-circle patterns (Fig. 4(a)) and
the optimized patterns without applying the practical considerations in Sec. 4.1 (Fig. 4(b)) are
shown for comparison. The patterns without the practical considerations (Fig. 4(b)) have more
emphasis on high-angle illumination; the patterns optimized with the practical considerations
(Fig. 4(c)) have dense and connected patterns to cover more low-angle LEDs, which presumably
give a better SNR and are more robust for misalignment.

Throughout the pattern optimization, we use ground truth simulated objects that are somewhat
similar to the types of samples we expect in experimental applications. We simulate spherical
objects with smaller high-RI spheres inside to mimic simple cells. A small Gaussian noise
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Fig. 4. Experimental 3D refractive index volume reconstruction with different illumination
pattern designs, for a polystyrene bead sample. (a) Half-circular differential phase contrast
(DPC) patterns, (b) optimized patterns without practical considerations in Section 4.1, and
(c) optimized patterns with practical considerations, which gives the best reconstructions.

with mean 0 and standard deviation 0.25 (which is about 3% of the real part of the maximum
scattering potential value) is also added to each object’s scattering potential to increase the spatial
frequency diversity of simulated objects and to avoid over-fitting to particular spatial frequencies.

5.3. RI reconstruction with optimized DPC patterns

The optimized DPC patterns were programmed on the experimental system for validation. We
imaged 10µm polystyrene-based microsphere beads (Sigma-Aldrich) with RI 1.6 [37] in RI 1.584
index-matching oil (Cargille; RI 1.592 at λ = 525nm). Some microspheres were greater than
10µm in diameter, possibly due to their reaction to the index-matching oil or degradation during
storage. We acquired an image stack for each illumination pattern, defocused by the precision
z-stage with 1µm spacing between planes.

As a comparison, the RI reconstructions for the half-circular DPC patterns used in [22], patterns
optimized without practical considerations, and patterns optimized with practical considerations
are shown in the third row of Fig. 4 respectively. The patterns optimized with practical
considerations (Fig. 4(c)), give more accurate RI values and reduce elongation artifacts [22] in the
axial direction compared with the half-circular baseline (Fig. 4(a) and patterns optimized without
the practical considerations (Fig. 4(b)). Therefore, the practical considerations helps to improve
experimental robustness and the patterns optimized with the practical considerations (Fig. 4(c))
are used as our final optimized DPC patterns. A 3D reconstruction of human embryonic stem
cells using the final optimized DPC patterns is shown in Fig. 5.

To further investigate the optimized DPC patterns, we visualize the 3D phase transfer functions
(HRe in Eq. (3)) corresponding to the patterns (Fig. 6). Note that zeros in the transfer function
indicate that no phase information is encoded in the intensity measurements for that spatial
frequency. Therefore, a good set of illumination patterns should have as many non-zero regions
as possible to recover 3D information. Dotted circles in 2D slices indicate the region of missing
cones (also illustrated in 3D in Fig. 6(c)), in which the phase information cannot be encoded
due to the limited NA [31,38]. Figure 6(b) shows the 3D transfer function for a traditional DPC
half-circular pattern, for comparison. The transfer function of DPC pattern has good coverage at
the zero axial frequency plane, but misses the low-frequency content (indicated by the arrows
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Fig. 5. Experimental 3D refractive index volume reconstruction of human embryonic stem
cells (hESC) using optimized illumination patterns. (a) A lateral slice of the refractive index
reconstruction with two zoomed-in regions at different z planes. (b) 3D rendering (also see
Visualization 1).

in Fig. 6(b)) outside of the missing cones at non-zero axial frequencies. This explains the RI
underestimation of the DPC patterns in Fig. 4(a); the transfer functions for the optimized patterns
have good coverage of low-frequency content across different axial frequencies and thus recover
a more accurate quantitative RI value.

5.4. Experimental validation with self-calibration + optimized patterns

We combined hand-turning axial scanning with the optimized illumination patterns into our final
3D DPC system. We imaged 10µm borosilicate glass (RI 1.56) microspheres (Duke Standards,
Thermo Fisher) in RI 1.54 index-matching oil (Cargille; RI 1.546 at λ = 525nm). The illumination
sequence consisted of the 4 optimized patterns in Fig. 4(c) and one single-LED illumination for
defocus self-calibration. During the acquisition, we continuously turned the fine focus knob by
hand at an approximately steady speed, while the LED array looped through the illumination
patterns and sent triggers to the camera after each update. We acquired 375 frames (75 frames
for each illumination) in about 25 seconds, and the total defocus was about one rotation of the
fine focus knob, roughly 100µm of defocus. With single-LED illumination measurements, we
performed defocus self-calibration and recovered the defocus positions shown in Fig. 7(a). The
self-calibration optimization took about 7 minutes to finish 100 iterations using a single GPU
(Nvidia Titan X). The self-calibration update reached its convergence after around 50 iterations

https://doi.org/10.6084/m9.figshare.19142438
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Fig. 6. Comparison of the 3D phase transfer functions for (a) the 4 optimized illumination
patterns from our physics-based learning, and (b) a half-circular DPC pattern. Dotted circles
in (a) and (b) indicate the phase transfer function’s missing cones, which can also be seen in
(c) the 3D visualization of the theoretically feasible support regions of the transfer function
(due to the limited NA).

(see Fig. 7(b)). The reconstructed 3D RI volume is visualized in Fig. 7(c), with zoom-in lateral
and axial sections for the two insets. Many detailed features within microspheres (presumably
due to the fabrication imperfection) can be observed with clear contrast in both insets, showing
the efficacy of the optimized patterns. The quantitative RI values also match well to the labeled
value of the glass microspheres (RI 1.56), with the exception of a negative relative RI and a zero
relative RI microsphere in inset 2 of Fig. 7(c). We believe these two microspheres have different
RI inherently after checking the measured image contrast. The halo artifact for phase imaging
described in [39,40] can also be observed for our 3D reconstruction on the in-focus plane of an
object; a non-negativity constraint can be used during the Tikhonov reconstruction to suppress
the halo artifact as described in [22].
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Fig. 7. Experimental 3D refractive index reconstructions of borosilicate glass beads from a
hand-tuned defocus stack. (a) Reconstructed refractive index at one depth slice, with two
zoom-ins showing lateral and axial cross-sections and different depth slices. (b) Recovered
defocus positions after self-calibration. (c) Self-calibration loss (defined in Eq. (8)) for each
iteration of the joint optimization, which converges after 80 iterations.

6. Conclusion

We demonstrated an extension of 3D differential phase contrast (DPC) imaging with improved
reconstruction and without a motion z-stage. We introduced a practical stage-free axial scanning
by spinning the built-in focus knob while taking measurements and then self-calibrating for the
actual defocus positions later using a joint update algorithm. We also showed the illumination
patterns can be optimized for a better refractive index reconstruction.

Future work could focus on tailoring the loss function for the optimization based on the
application. For example, low-frequency contrast will be more important if we are interested
in segmenting densely placed cells. It is also worthwhile to investigate the role of different
regularization of the reconstruction. We used Tikhonov regularizer in this paper for its generality,
while other regularizers, such as total variation (TV) and deep learning-related ones [41,42],
might bring other insights in particular imaging scenarios.
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